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Two stable numertcal methods are presented to solve the self-mductton equation of vortex 
theory. These numerical methods are validated by comparison with known exact solutions. A 
new self-similar solution of the self-induction equation IS presented and the approximate 
solutions are shown to converge to the exact solution for the self-similar solution. The 
numerical method IS then generalized to solve the equations of motion of a superfluid vortex 
in the self-induction approximation where reconnection IS allowed. A careful numerical study 
shows that the mesh spacmg of the method must be restricted so that the approximate 
solutions are accurate. The hne length density of a system of superfluid vortices ts calculated. 
Contrary to earher results it IS found that the line length density produced does not scale as 
the velocity squared and therefore IS not characteristic of homogeneous turbulence. It is con- 
cluded that the model equation used is Inadequate to describe superfluid turbulence. i, 1988 
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INTRODUCTION 

We present a numerical method which solves the equations of motion for a 
superfluid vortex in the self-induction approximation. We present the first, as far as 
we know, stable numerical methods to solve the self-induction equation. The self- 
induction equation is equivalent to a non-linear Schrbdinger equation which has an 
infinite number of integral invariants. The numerical stability of our methods 
results from the fact that we preserve three of these invariants. We validate our 
numerical methods with a careful comparison of known smooth exact solutions 
with the approximate solutions; we find that one method is second-order accurate 
in space and time, while the other is fourth-order accurate in space when the time 
step is appropriately related to the spatial step. We also present a new exact self- 
similar solution of the Riemann problem for the self-induction equation; we verify 
that the approximate solutions converge to the exact solution for the self-similar 
solution. The Riemann problem is particularly interesting because we solve a model 
equation which incorporates the reconnecton ansatz of Feynman [l] as introduced 
by Schwarz [2] which introduces the same singularity to the vortex as is present in 
the Riemann problem. 
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A vortex evolving according to the self-induction equation does not stretch or 
contract and we use this property when solving the self-induction equation; thus we 
generalize our basic method to solve equations which are perturbations of the self- 
induction equation which cause the vortex to stretch or contract. We apply our 
method to an equation proposed by Schwarz [3] which is used with the reconnec- 
tion ansatz to model the evolution of a superfluid vortex. We find that certain 
restrictions must be placed on the mesh spacing along the vortex so that the 
approximate solutions give good approximations to the exact solutions; in the 
appropriate dimensionless units the condition is that A( the mesh spacing must 
satisfy A< 60.5. We use our method to calculate the equilibrium line length in a 
cube with periodic boundary conditions. If the line length density is characteristic of 
homogeneous turbulence the line length density should be proportional to the mean 
countercurrent velocity squared. Contrary to earlier results we find that the line 
length density is nearly linearly dependent on the countercurrent velocity; however, 
we are able to reproduce earlier results when the mesh spacing condition is violated. 

THE SELF-INDUCTION EQUATION 

We consider a line vortex in an infinite three-dimensional incompressible 
isentropic fluid. The position of the line vortex is given by a function r(t), where 5 
is a Lagrangian variable labeling the fluid particles along the vortex. The velocity 
u(x) of the fluid at the point x in the fluid is given by [4] 

(1) 

where p = x -r(t), f is the strength of the vortex, and the integration is carried out 
along the entire vortex. Since the vortex moves with the local fluid velocity, Eq. (1) 
formally determines the evolution of the vortex when we evaluate the fluid velocity 
on the line vortex itself. However, as x approaches the line vortex Ip] + 0 and the 
integral in Eq. (1) diverges. In order to determine the behavior of the velocity as x 
approaches the vortex a formal expansion of the integrand can be carried out 
[S, 6, 71. The result is 

u(xo,=~ log k r’ x r” + 0( 1 ), (2) 

where g is the distance from the point of observation x,, to the line vortex, ’ denotes 
the derivative with respect to arclength measured along the vortex, L is a small 
fixed length, and 0( 1) indicates the terms of lower order in cr which have been 
ignored. 0 is generally chosen equal to some multiple of the radius of the vortex and 
the lower order terms are ignored. Equation (2) is called the self-induction 
approximation. The approximation is not a good approximation for long times 
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since the ignored terms are generally comparable to the term which remains. 
Furthermore, as we shall see shortly, the self-induction approximation allows for no 
stretching of the vortex; this is in contrast to the stretching which occurs when the 
nonlocal terms are not ignored [S, 93. The main attribute of the self-induction 
approximation is the fact that it is a local approximation; this is the reason that the 
approximation is so widely used in vortex dynamics. 

From Eq. (2) we obtain the equation of motion for a vortex in the self-induction 
approximation: 

where t is time, /I = (r/47c) log(L/g). Without loss of generality we choose j3 = 1.0. 
We first show that a vortex evolving according to Eq. (3) does not stretch or con- 
tract. Define g = i?r/?g and g = Jgl, then we have that g = as/a< and ~?/a( = g C?/ds, 
where s denotes arclength measured along the vortex. If we differentiate the terms of 
Eq. (3) with respect to 5 we find 

(4) 

If take the inner product of Eq. (4) with g we have 

Since 
. c 

s= -gdf, 
! 0 

Eq. (5) tells us that &/St = 0, i.e., the vortex does not stretch or contract. s depends 
only on the initial Lagrangian parametrization of the vortex and is independent of 
time; thus we may choose the arclength as a Lagrangian parametrization of the 
vortex. If we parametrize the vortex in terms of the arclength Eq. (4) becomes 

(6) 

where I= dr/ds is the unit tangent to the vortex and g= gl. Equation (6) is 
equivalent to Eq. (3) in the following sense: if f(s, t) is a solution of Eq. (6) then 
r(s. t) is a solution of Eq. (3) if we define r as 

r(s, t) = r(0, 0) + 1’ (40, rl) x f’(O, rl)) 4 + f’ (Yi, t) x /“(i, t)) 4, (7) 
0 ‘0 
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where ’ = c?/&. The fact that r(s, t), as given by Eq. (7), is a solution of Eq. (3) can 
be verified by substitution of the appropriate derivatives into Eq. (3). 

We use Eq. (6) to solve for I rather than use Eq. (3) to solve for r directly for the 
following reasons. Solutions of Eq. (6) satisfy the constraint that 111 = 1. Thus we 
see that the motion of the vortex is really determined by only two independent 
quantities. We are able to design our numerical methods so that II( = 1 numerically 
as well; whereas if we were to use Eq. (3) it is not obvious how to impose a similar 
constraint. This observation seems to be key in developing stable schemes to solve 
the self-induction equation. If the constraint is not imposed on the numerical 
methods then one component of the motion of the vortex is undetermined and the 
undetermined component will grow in an unstable manner. 

Hasimoto [lo] shows that Eq. (6) is equivalent to the non-linear Schrodinger 
equation: 

where 1+5 is a complex scalar function related to the curvature and torsion of the 
vortex. Equation (8) is a soliton equation which has an infinite number of integral 
invariants. The simplest of these invariants, which we take from Newell [ 111, is 

(9) 

In addition to the scalar invariants of the Schrodinger equation, Eq. (3) has at 
least one vector invariant for closed vortices. Define A = +J r x 1 ds, where the 
integration is carried out along a closed vortex. If the vortex lies in a plane, (Al is 
equal to the area enclosed by the vortex and A points in a direction normal to the 
plane in which the vortex lies. We show that for a closed vortex evolving according 
to Eq. (3) dA/dt = 0. From the definition of A we have 

dA 1 dr a, -=- 
dt 2 26 

xl+rx- ds at > 

=- :S((fxl’)xl+rx(fxI”))d~ 

= j-(fxf’)xIds=j-l’ds=O, (10) 

where in the second equality we have used Eqs. (3) and (6), and in the third 
equality we have integrated by parts. An immediate consequence of (10) is the fact 
that circular vortices remain circularly shaped as they evolve according to the self- 
induction equation. 
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EXACT SOLUTIONS OF THE SELF-INDUCTION EQUATION 

Vortices in the shapes of circles, helices, or lines evolve according to Eq. (3) so 
that their initial shape remains unchanged as they propagate. A family of exact 
solutions of Eq. (6), known as solitons, can be generated by considering solutions 
of the non-linear SchrGdinger equation. Hasimoto [lo] writes down an explicit for- 
mula for a soliton on a vortex; the vortex has constant torsion T and its curvature K 
is given by K’ =4v2 sech’v(s-2rr), where 1’ is a constant. The corresponding 
equation for the tangent I of the vortex, written in its Cartesian components, is 

I,. = 1 - 2~ sech’ ‘1, 

I, + il, = -2~ sech q(tanh q - iT) e’@, 
(11) 

where q = v(s - 2~t), T= r/1’, 0 = TV + (~1’ + .r2) t, and p = l/( 1 + T’). The vortex is 
oriented so that the tangent is parallel to the .u-axis at s = + cc. We use this family 
of solutions for verifying our numerical schemes for smooth solutions. 

We now present a new exact solution of Eq. (6). The solution is self-similar and 
solves the Riemann problem: 

4&o)= I 
i 

I+ if s>O 
- if s < 0, (12) 

where 1, and fP are constant unit vectors. Consider a solution I(s, I) of Eq. (6) with 
initial conditions (12) under the coordinate transformation S= s/a and i= t/P. We 
find that 

(13) 

If we let a = d$ then Eq. (6) is identical to Eq. (13) and since the initial conditions 
(12) are invariant under the coordinate transformation we are considering, we find 
I(s, t) = I(.s/&, r/p) for all fl. By choosing b = r we find that 1 is a function of the 
self-similar variable 9 = s/J;. When we substitute f(q) into Eq. (6) we find that I 
satisfies 

dl d’l 
q--=27x1, 

dv 4 
(14) 

where 9 = s/J;. 
We can solve Eq. (14) by use of the Frenet-Serret formulae. The Frenet-Serret 

formulae depend only on the fact that we have a smooth parametrization of a unit 
vector. Let r(t) be a unit vector and define K: = +ldf/d(l. We define n5 to be a con- 
tinuous unit vector such that Kgnt = dl/d( and since 1. dl/d( = 0 we define b, = 1 x n: 
to give us the third member of the orthonormal triad. Define ~~ = b, .dQdt. We 
use the subscrit 5: to emphasize the fact that the defined quantities depend on the 
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particular parametrization of I that we use. We immediately write down the Frenett 
Serret formulae: 

(15) 

where we have used the definitions given above; and we have used the 
orthogonality relations between the vectors to obtain the fact that the matrix in Eq. 
(15) must be of the form given. 

We rewrite Eq. (14) by repeated use of Eq. (15) to obtain 

q~,,n,, = -2 3 b, + 2~,r,n,. 
4 

(16) 

From Eq. ( 16) we see that K,, = K, a constant, and since we assume K,, # 0. (If K~ = 0 
the solution reduces to the trivial straight vortex case.) We have r,, = q/2. We no,w 
relate the true curvature and torsion ti, and r, to K~ and 5,. Since P/i% = (l/J t ) 
(d/dq) we have 

(17) 

From Eq. (17) we deduce two facts: (1) n,=n, and thus b,= b,; (2) K = tio/,,h, 

where we denote the true curvature K, by K. From the definitions of t, and T,, and 
from the fact that b, = b, we obtain that 7 = r,,/fi = s/2t, where we denote the true 
torsion T, by r. We have obtained that the solution to Eq. (6) with initial conditions 
(12) is the vortex specified by 

(18) 

where K and T are the curvature and torsion of the vortex, and K~ is a constant 
determined by the angle between I, and I- [12]. We note that initially the cur- 
vature of the vortex is zero everywhere along the vortex except for a Dirac mass at 
the origin; at positive times the curvature is constant along the vortex; this 
behaviour is indicative of the fact that waves can travel with an infinite speed along 
a vortex whose evolution is governed by the self-induction equation. We use this 
solution when verifying our secnd-order numerical scheme for singular initial data. 

THE FINITE DIFFERENCE EQUATIONS FOR SELF-INDUCTION 

In this section we introduce a finite difference approximation of Eq. (6) which is 
second-order accurate in space and time. We present three invariants of the 
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equations and we present a method for solving the non-linear difference equations 
which shows that solutions of the finite difference equations can be found for all 
times and for all initial conditions. We also present a method which is second-order 
accurate in time and fourth-order accurate in space which produces approximate 
solutions which satisfy the same invariants as do solutions of the second-order 
scheme. 

Let f; denote the approximation to Qjds, n dt) which satisfies 

,:,.L,(,=7 At (1; +Ijr+l 
4( As) 

) x (f:‘- , + 1;:; + I;+, + ry, ), (19) 

where ds is the spatial increment and At is the temporal increment. Equation (19) is 
a Crank-Nicholson type scheme. The second term on the right side of (19) is the 
second-order centered difference approximation for second-order derivatives, in 
which the missing term has been cancelled by the first term in the cross product. 
Solutions of Eq. (19) have three invariants, 

pl’+‘l = qq, (20) 
,= Y J=N 

1 I;+‘= c y, (21) 
,=I /=I 

, = M , = N 
1 If;+‘- r;g2= 1 II;-I;J2, (22) 
/=I /=I 

where f; satisfies periodic boundary conditions. The first invariant (20) guarantees 
that there is no local stretching of the vortex which is also true for solutions of Eq. 
(6): I is a unit vector for all times and Eq. (20) shows that II;/ is a unit vector for all 
H provided that it has unit magnitude initially. The second invariant (21) guaran- 
tees that a closed vortex remains a closed vortex. The third invariant (22) 
corresponds to the invariant of Eq. (6) 

where ’ = d/as. 
We present two iterative methods for solving the finite difference equation (19). 

Both methods produce a sequence of unit vectors x,” which converge to I,“+ ‘, the 
unique solution of (19), provided Ar is appropriately restricted. Both methods 
converge independently of the initial conditions. In the first method we define the 
sequence iteratively as follows. Assume we are given any I,” of unit magnitude, then 
define y, k + ’ by the equation 

At 
y;+‘-/;=----i 

4(As)- (1:’ + x,“) x t,;- , + x:- , + l,“+ , + x;+ , ), (23) 
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and then define 

Xk+l= yfl+’ 
J 

-3. 

If we require At/As2 < a it can be shown that the sequence xf defined by Eqs. (23) 
and (24) converges to I; + ’ , . furthermore, the analysis shows the solution of (19) is 
unique [12]. The restrtction on At/As’ guarantees that the sequence xf is always 
well defined and converges for any xP of unit magnitude; however, we always 
choose x,” = I;‘. 

In order to define the sequence x: for the second method we first solve the linear 
equation 

x+bxx=l+lxb, (25) 

for x in terms of the other vectors. The solution to Eq. (25) is 

We note that 1x1 = 111; this fact guarantees that the vectors of the sequence, which 
we define shortly, are of unit magnitude. We define the sequence of unit vectors x,” 
iteratively by the equation 

x:+‘-I:=~(f;‘+x:+‘)x(f;~~,+x~~,+[;’+,+x:,,). 4( As)- 
(27) 

Equation (27) can be written in the form of Eq. (25) in order to solve for x,“+ I. We 
assume that If”1 = 1 and thus we have a sequence of unit vectors x:. If we restrict 

I. 

At/As2 < 1 it can be shown that the sequence ?$ converges 
solution of Eq. (19); furthermore, the solution exists for all fJ’ 

Invariants (20) and (22) show that the numerical method 
norm I/ . I( , defined as 

to 1; + ’ the unique 
c121. 
is stable in the HA 

/=N J=N (I”-/” I2 

I(I”(I:=As 1 lf;12+As c ’ A;;’ , 
/=I /=I 

where we denote by 1” the 3N component solution vector of Eq. (19) at the time 
step n made up of the f;. The numerical method is stable since from (20) and (22) 
we have ((1”j) I = ~~f”~l,. 

The method defined by Eq. (19) is formally second-order accurate in space and 
second-order accurate in time. If we solve the finite difference equations by Eq. (27) 
we must place the restriction At < As2 on the time step; thus the overall method is 
limited by the second-order accuracy in the space discretization. We obtain a 
method which is formally fourth-order accurate overall in As by replacing the 
second-order spatial approximation in Eq. (19) by the fourth-order centered 
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difference approximation. The fourth-order approximation is defined by requiring 
that it satisfy 

where fTye = (1; + f,” + ‘)/2. The finite difference equations (28) can be solved by the 
method analogous to the one given in Eq. (27); the condition At/As2 < 6 guaran- 
tees that the solutions exist and are unique [ 121. Solutions of Eq. (28) also have 
three invariants. 

where I; satisfies periodic boundary conditions. Equation (30) is the fourth-order 
analog of Eq. (22). Method (28) is stable in the HJ, norm II.Ij, defined as 

where I” is the 3N component solution vector of (28) made up of the I;. Method 
(28) is stable since from Eq. (29) and Eq. (30) we have that /11”11, = 1110/1 ,. 

Given an approximation to the tangent field of the vortex we now determine an 
approximation to the position of the vortex r(s, t). Our approximation of r(s, t) is 
based on Eq. (7). We use second-order integration methods in evaluating the 
integrals in Eq. (7) to maintain second-order accuracy. Let u denote the velocity of 
the vortex; then we have 

Sr dl 
u(s, t)=;i;=rxils. 

Let U-J’+ ’ 2 denote the approximation of u(j As, (n + f) At) defined by 

(31) 
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where iTVe = (f; + ’ +[;)/2. Using equations (7) and (29) we obtain r;, the 
approximation to r( j ds, n dt): 

(32) 

Approximation (32) gives us a self-consistency property for the motion of a point 
on the vortex. This consistency property is the fact that the calculated position in 
3-space of a particle on the vortex is independent of where on the vortex we 
calculate the velocity numerically, provided we use Eq. (19) and (31) as the defining 
equations for 1; and II,“. In order to verify this consistency property we show that 
the motion of a particle is given by 

p* 1 _ 
/ 

ql= A[ q+ l/2, (33) 

for all j and n where II,“+ I” IS defined by Eqs. (3 1) and ( 19 ), and r; is given by Eq. 
(32). Using the definition of r; we obtain 

rn+l- I r;=dIuIi+l,2+dJ’ i (/;+I 
2 

- 1; + 1;:: - I;- , ) 
r=l 

=Ar,,;f+‘,‘+At 2 (,;+12-,;,;/2) 

,=I 

= At u;+ “2, (34) 

where in the second equality we use Eq. (19), in the fourth equality we use Eq. (31) 
and we use the notation fyve= (I;+r +1:)/2. 

We summarize our basic second-order method for obtaining approximate 
solutions to Eq. (3). We solve Eq. (19) by means of Eq. (27) in order to obtain f; 
the approximate solutions of Eq. (6); we then use Eqs. (31) and (32) to find r,“, the 
second-order approximate solutions of Eq. (3). 

An analoguous method is used to obtain the fourth-order approximations, except 
for the fact that our approximations are chosen to be fourth-order accurate in 
space. We write the analog to Eq. (32) using a symmetric fourth-order integration 
formula. We define r,“, the fourth-order approximation to r(j As, n At), as 

rj’-rz+At i (II:-~~~)+~ i (-I;+, + 131;+ 131:_,-1;-,), (35) 
,,I = 1 r=, 
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where the f,” are solutions of Eq. (28). We define u, n + ‘F* so that it is a fourth-order 
(in space) approximation to u(s, t) and so that it satisfies Eq. (33). We find that 
u; + I,?, the approximation to u(j As, (n + +) At), is defined by 

where I;,, z (I; + ’ +1;)/2. We note that each term in Eq. (36) is a second-order 
approximation to Ix I’ while the sum is a fourth-order approximation to Ix I’. We 
can show, using the analogous procedure as shown in Eq. (34) that 

fl+ I 
I 

-r;=Atu;+““, 

for all j and n, where r~’ and u,” + ‘u* are defined by Eq. (36), Eq. (35) and Eq. (28); 
thus the fourth-order method has the same invariants and consistency property as 
the second-order method. 

We summarize our basic fourth-order method for finding approximate solutions 
to Eq. (3). We solve Eq. (28) by means of the method outlined by Eqs. (25)-(27) to 
find I;‘; we then use Eqs. (35) and (36) to find r;, the fourth-order approximate 
solutions to Eq. (3). 

NUMERICAL RESULTS FOR SELF-INDUCTION 

In this section we compare the approximate solutions obtained by Eq. (19) with 
the exact solutions given by Eq. ( 11) for several values of v and 7, the parameters of 
Eq. (11). We find that Eq. (19) produces approximate solutions which are second- 
order accurate in both space and time for smooth solutions. We also verify that the 
approximate solutions obtained with Eq. (19) converge to the exact solution for the 
discontinuous initial conditions of the self-similar solution given by Eq. (12). We 
also verify that the approximate solutions obtained from Eq. (28) are fourth-order 
accurate in space when we take At = c As’, where c < s is a constant, by comparing 
them to exact solutions of Eq. (11). 

In order to verify the accuracy of the approximate solutions we use the exact 
solutions given by Eq. ( 11) for several different values of the parameters v and 7. 

We pick the initial conditions so that the exact and approximate solutions are equal 
at the approximation points initially. We find that the error for the second-order 
method satisfies Ez C, As* + C, At2, where C, and CZ depend on v and T, the 
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parameters of solution ( 1 1 ), and the time t = n At. The error E can be the maximum 
error E,,, defined as 

E max = max, Ir; - f(j As, n At)1 

or the Lz error EL2 defined as 

Et?=A.s i If,“-l(jAs,nAt)l*. 
,=I 

We also compare the approximate solutions given by Eq. (28) with the exact 
solutions given by Eq. (11) for several different values of v and T. For the fourth- 
order method we find that E z C,, As4 for both the L2 and the maximum error, 
where we set At = c As*, where c < 5. C,, depends on v, r, c, and the time t = n At. 

We also compare the exact self-similar solution given by (18) with the 
approximate solutions obtained from Eq. (19). We find that the approximate 
solutions converge to the exact solution in both the maximum and L, norms 
defined above; however, the rate of convergence is lower than the second-order 
convergence which we obtain for smooth solutions of the self-induction equation. 
This is due to the fact that the self-similar solution is not smooth initially and thus 
the error estimates valid for smooth solutions do not apply to this case. See Figs. 1 
and 2. In Fig. 3 we show the exact and calculated self-similar solutions. We observe 
that the tangent vectors converge strongly to the exact solution whereas the 
curvature and torsion of the approximate solutions converge weakly to the exact 
solution [ 121. We have not compared the approximate self-similar solutions 
obtained using Eq. (28) with the exact solutions of the self-similar problem. 

IO-2A 

10-Z 10-I 100 

L3.r 

FIG. 1. The .Lz error in the self-similar solution. The L2 error IS computed m the interval 0 G s < 20 0 
at time I = 1.0 and plotted as a function of the mesh spacmg As. For all points At = As’/2. The 
approximate solutions are defined by Eq. (19) taking Eq. (12) as Initial conditions. 
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@/ 
10-2 10-l 100 

As 

FIG. 2. The maximum error m the self-stmilar solution. The maximum error is computed m the 
interval 0 GsG20.0 at time I= 1.0 and plotted as a function of the mesh spacing ds. For all pomts 
dr = A?/? The approxtmate soluttons are defined by Eq. (19) taking Eq (12) as inittal conditions. 

In concluding this section we wish to make a few comments on the numerical 
methods we have developed to solve the self-induction equation. The obvious 
features of the methods are that they are stable and satisfy several consistency 
properties. The methods are stable for all values of At/(&)*. The unfortunate thing 
about Eqs. (19) and (28) is that they are implicit and must be solved iteratively. We 
have shown that for arbitrary initial conditions the equations can be solved 
provided Ar < C As’. For the self-similar solution we conjecture that these con- 
ditions are also necessary for the approximate solutions to converge to the exact 

06 

FIG 3. A comparison of the exact and calculated self-similar solutron. The posrttve half of the self- 
similar vortex solution is projected onto the y-z plane. Initially the vortex lies m the x - p plane with 
I- pointing in the negative .r direction and I, pointing in the postttve x direction. For this configuration 
h’. 5 0.4697. The solution IS shown at time t = 1 0, the approximate solution is calculated with a mesh 
spacmg ds = 0.05 and AI = As’/8 
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solutions; the reason for this conjecture is that although Eq. (19) is an implicit 
scheme the numerical data propagates as if it were an explicit scheme [12]. We 
wish to point out, however, that these conditions can be relaxed when the initial 
data is smooth. For instance when calculating the solutions given by Eq. (11) we 
could take Ar > As’. 

VORTICES IN SUPERFLUID HELIUM 

Vortices in superfluid helium are generally assumed to obey Euler’s equation and 
thus they share some properties of vortices in an ideal fluid; the circulation of 
superfluid vortices, however, is quantized and therefore superfluid vortices do not 
behave completely the same as ordinary ideal vortices. In order to simplify the 
problem of calculating the evolution of a system of superfluid vortices Schwarz [2] 
introduced an approximation which depends only on the local geometry of the 
vortices. In Schwarz’s model the superfluid vortices are assumed to obey Euler’s 
equation with an additional force term added which models the drag that the 
normal component of the superfluid exerts on the superfluid component. The part 
of the motion determined by Euler’s equation is modeled by assuming that the 
vortex obeys the self-induction equation (3). The drag force exerted on the vortices 
by the normal component is modeled by an heuristic model introduced by Hall and 
Vinen [ 131. The result is that the motion of a superfluid vortex is assumed to obey 

2 = jr’ x r” + ar’ x (v. - fir’ x r”). (37) 

where ’ denotes the derivative with respect to arclength measured along the vortex, 
r is the position of the vortex, B is approximately equal to the quantum of 
circulation, o! = p,,B/2p is the dimensionless friction coefftcient, where B is the 
conventional Hall-Vinen coefftcient [ 131, p,, is the normal fluid density, p is the 
total density of the fluid, and vO is the local average countercurrent velocity; in 
Schwarz’s model, which we consider here, vO is assumed constant. 

We can write Eq. (37) in dimensonless form by introducing dimensionless 
quantities by dtining x = Iv,, r/b as the dimensionless position vector and in 
general measuring all lengths in units of fi/lvOl and by defining T = (vJ2 t/b as the 
dimensionless time. The resultant equation becomes 

2 = x’ x 1” + ax’ x 9, + ax”, (38) 

where to is the dimensionless unit vector in the v,, direction and ’ indicates differen- 
tiation with respect to dimensionless arclength. Equation (38) has also been sim- 
plified by expansion of the double cross product and the observation that r’ r” = 0. 
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Rather than use the natural length scale /3/lv,l, Schwarz [3] introduces an 
arbitrary length scale which he sets equal to 1 cm. 

There is no non-local interaction present in Eq. (37). Two distinct vortices 
governed by Eq. (37) pass through one another without experiencing any mutual 
influence; in order that vortices influence each other we incorporate the reconnec- 
tion ansatz of Feynman [l] which states that whenever two vortices cross each 
other they will reconnect; see Fig. 4. 

We develop a numerical method to solve Eq. (38) and incorporate the reconnec- 
tion ansatz in order to determine the evolution of a system of superfluid vortices. 
Turbulence in superfluid helium is often characterized by determining the line 
length density of vortices, that is, the total length of vortices present per unit 
volume of fluid. We determine the line length density numerically by considering a 
cube of unit dimension with periodic boundary conditions and determine the total 
length of vortices present in the cube as a function of the countercurrent velocity vO. 
Homogeneous turbulence is characterized by the fact that the line length density is 

Before the Reconnection 

After the Reconnection 

Frc. 4 The reconnectlon ansatz. This IS a local diagram of vortices crossmg immediately before and 
Immediately after a reconnectlon. The algorithm does not smooth the reconnection as shown m the 
second diagram. but leaves a singularity there The reconnection is umquely determined by the directlon 
of the vortuty 
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proportional to vi [3]. Our calculations show that Eq. (37) does not produce line 
length densities which are characteristic of homogeneous turbulence. 

If we differentiate the terms of Eq. (38) with respect to {, the Lagrangian 
parametrization of the vortex, we obtain 

(39) 

where g = c?~/c?& g= (gl = as/&& g = gl, and ’ denotes the partial derivative with 
respect to the arclength s. If we assume that we have a solution g of Eq. (39) we can 
write a solution of Eq. (38) by defining x(r, T) as 

x(~,T)=X(O,O)+j~V(O,~)d~+j~g(i,T)di, (40) 

where v( 5, T) = Ix I’ + crf x G, + ~11’. We can verify that Eq. (40) gives a solution of 
Eq. (38) by direct substitution. 

EXACT SOLUTIONS OF THE MODEL EQUATION 

It can be shown that circular vortices are exact solutions of Eq. (38) 1121. If we 
specify the radius r and binormal b of the circular vortex as a function of time then 
the evolution of the circular vortex is uniquely determined. We can write the dif- 
ferential equations defining the evolution of the radius and binormal of the circular 
vortices satisfying Eq. (38) as 

dr 1 
-cos %--, 

z- r 

and 

dcos% 1-cos’% -= 
dr r ’ 

where cos 8 = (b . to). For the cases cos % = f 1 we solve Eq. (41) to find 

r-r,+ln for cos %= 1, 

and 

for cos %= -1, 

(41) 

(42) 

(43 ) 

(44) 
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FIG 5. Radius as a function of time for a circular vortex. The radius of a circular vortex evolving 

according to Eq (37) is plotted as a function of time for various initial radii with cos 0 =OS initially. 

where rO is the initial radius of the vortex. From (43) we see that if cos 8 = 1 the 
radius decreases to zero in finite time provided r. < 1; for cos 13 = -1 from (44) we 
see that the radius decreases to zero in finite time for all r,,. The solutions of Eqs. 
(41) and (42) for arbitrary initial conditions are similar to the solution given by Eq. 
(43) except for the fact that cos 8 is an increasing function of time provided 
(cos 81 # 1 initially. For small rO the radius decreases to zero in finite time and for 
large r. the radius increases asymptotically linearly in time. See Fig. 5. The impor- 
tant fact about circular solutions is that all circular solutions decrease to zero in 
finite time provided that rO < 1. 

For a general solution of Eq. (38) the length of the vortex decreases in regions 
where the curvature K > 1; we can see this by multiplying both sides of Eq. (39) by 
g to obtain 

4T z = agk-( b . to - it-), 

where we use the Frenet-Serret formula to simplify the right side of Eq. (39). 

THE FINITE DIFFERENCE EQUATIONS 

(45) 

We now introduce a set of finite difference equations to approximate Eq. (39). 
We view Eq. (39) as a perturbation of Eq. (6); however, it is no longer possible to 
take the arclength as the Lagrangian parametrization of the vortex since the 
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arclength of a vortex evolving according to Eq. (39) is a function of time. Our finite 
difference equation approximating Eq. (39) is 

PI + I g, -g:‘=&(’ , -5 x(h ,+,f,+,+h,~,f,~2)+a~(l,+, -f,m-,)xo, 

+a ~(h,+,f,+*-(h,+l+~~,~,)f,+h,~lf,-2). 

where dr is the time step, A< is the distance between mesh points, g,” is an 
approximation to g(j A& n As), g, = (g; + g-y+ ‘)/2, h, = l/lg,l, and f, SF h,g,. Note 
that If,1 = 1. Equation (46) follows from Eq. (38), the fact that S/ds = (l/g)(a/$<), 
and the second-order difference operator 

=L(u 4A5’ ,+1)1’,+2- n;(u,+,+u,-,j+u,- ,)~-,-r), 

where A, is the central divided difference operator. Equation (46) is designed so 
that the first two invariants (20) and (21) of the self-induction scheme (19) are 
preserved by Eq. (46) when c( = 0. Consider Eq. (46) for the case c( = 0, then when 
we multiply the terms of Eq. (46) by (g; + ’ + g;) we obtain that 

Thus the self-induction part of the numerical scheme introduces no stretching or 
contraction of the vortex. The second invariant is preserved even for the case when 
CY # 0. The invariant is 

fg ;+I= i g;, (47) 
,=I ,=I 

where we have assumed periodic boundary conditions. Equation (47) can be 
verified by summing the terms of Eq. (46) and noting that the terms appearing on 
the right side of the equation form a telescoping series. Equation (47) guarantees 
that vortices which are closed initially remain closed for all times when we define 
the approximation to r(j At, (n + 1) At), which we denote as r:,+ ‘, as 

where 

1 v” + 1:2 _ 
I 265 vJx(4+, -I,-,)+al,xv,+~h,(f,+,-I,~,), 



SUPERFLUID TURBULENCE 319 

with the quantities defined as in Eq. (46). With these definitions method (48) for 
approximating Eq. (37) is formally second-order accurate in space and time. 

The third invariant is not preserved exactly, but an expression analogous to Eq. 
(22) can be written down for solutions of Eq. (46). For the case tl = 0 it can be 
shown that 

, = :v 
c (fI,~,(f,-f,~2).((g~+’ -g;T,‘)-(g:‘-g:p,)))=o 
,=I 

for periodic boundary conditions, where the quantities appearing are defined in 
Eq. (46). 

We solve Eq. (46) by means of an iterative method analogous to the one given in 
Eq. (23). We do not use the normalization step as given in (24) since the g; for 
which we are solving in Eq. (46) change their magnitude. We formally write 
the method for solving Eq. (46). Let F,( ., .) be defined so that Eq. (46) can be 
rewritten as 

g;“’ - s;’ = F,k”, g” + ’ 1, 

where g” and g” + ’ denote the dependence of F, on the g: and g; + ’ for 1 6 id N. 
We define a sequence g” given g; by means of the equation 

k:-” -g; = F,W, iik), (49) 

where we chose g,” = g,“. Numerically we find that gf converges to a vector which 
satisfies Eq. (46) for all g; provided 

AT 1 
dr”14’ (50) 

and 

min, [g;I > 4. 

Thus we define g,” + ’ = lim,,. _ % gf. 
Equation (46) is valid for any Lagrangian parametrization of the vortex; 

however, if we choose as our parametrization the initial arclength of the vortex 
then, at least initially, the approximation points are uniformly spaced along the 
vortex. As the vortex evolves the approximation points will not remain uniformly 
spaced, but will become bunched together in regions where the vortex contracts and 
they will become spread apart in regions where the vortex stretches. We can 
monitor the distance between approximation points by monitoring lgJ’I at each time 
step. If we take initial arclength as our parametrization then ]g,“l = 1. If lg,“l becomes 
too large we introduce additional approximation points so that the distance 
between approximation points remains close to the initial value A(. If lg,“l becomes 
too small we have approximation points which are too closely spaced and even- 
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tually condition (50) will not be satisfied and we will not be able to find a solution 
to Eq. (46). 

There are a number of ways of introducing more approximation points, for 
instance, see Anderson and Greengard [14]; we choose a method due to Chorin 
[S] for spacing the points. If the magnitude of a vector g,” is greater than a certain 
length I,,,,, , we divide the vector in half and track the two vectors individually. The 
vector g; is replaced by two vectors g,“- Liz and g;+ ,.:*, where g;- ,iZ = g;+ ,i2 = g;/2. It 
may also happen that lg;l becomes smaller than some constant I,,,, tf this happens 
we replace the vectors g; and g,“, , by the vector gJ’ + g,“, , . After each time step we 
check the lengths of the g;+’ and add and delete points according to the descrip- 
tion given above so that at the beginning of each time step we have 

I,,” G kg d La, for all j. 

In our algorithm we choose I,,, = f and I,,, = 8. 
We determine if it is necessary to reconnect vortices by monitoring the distance 

between any two mesh points. If the distance between any two points is less than 
d& we save these points as a possible candidate for a reconnection. We then check 
all of the points in the neighborhood of the possible candidate and choose the pair 
of points which is the minimum distance apart and reconnect only the pair which is 
the minimum distance apart in a given neighborhood. Once we have chosen a pair 
of points for a reconnection we do not allow another reconnection within a distance 
of 645. We reconnect two points by redefining  Tr 16 0  TD 3192a9hsn6e81T8r -0.2452  Tc 0.2034  Tw (within ) T33  Tr -0.1801 Tj90  TD 3  Tr -0.240298  10  TD 32 Tr -0.19692nce po335 0  16 0  TD 3  Tr -0.1822  8d0500  4r Trr121  Tr 12.r -0.1607  Tc 0.istance within0  Tr 29.0668 0  TD 3  Tr -0.2034  Tc 3  Tr 0.0298  Tc -00  TD 3  Tr -0.1822  8d0500  4r Trr1214 0  TD 3  Tr -0.1729163  Tr 12.5of w e  vectors 

so that their nearest neighbors’ positions are unchanged. As we shall see in the 
following section, the details of the reconnection are unimportant as long as the 
spacing of the mesh is small enough. On the other hand if the spacing is too large, 
there is no way to reconnect the vortices correctly since small perturbations in the 
way in which one reconnects the vortices will make large changes in the resultant 
vortex conftguration; i.e., the resultant initial value problem is ill-posed. 

NUMERICAL RESULTS 

The truncation error in the numerical method and the resolution needed near the 
kinks in the vortices when they reconnect are carefully analyzed. Empirically, it is 
found that the mesh point spacing along the vortex A<, must satisfy 

where A< is measured in the appropriate dimensionless units, in order that the 
numerical solutions accurately represent the exact solutions. The calculations of 
Schwarz violate this criterion at high velocities and by repeating his calculations 
with a finer grid it is found that the results disagree with his work; it is found that 
the line length density of the vortex tangle is not proportional to the velocity 



SUPERFLUID TURBULENCE 321 

squared. It is concluded that the model used is inadequate to describe turbulence in 
superfluid helium. 

The only exact solutions of the complete equation (38) which are known are the 
solutions given by Eqs. (41) and (42). We have compared our approximate 
solutions obtained with Eq. (46) with the exact solutions and find that the 
approximate solutions converge to the exact solutions. These trivial solutions 
evolve in time only by changing their radius and orientation relative to v0 and are 
only of limited value in verifying a numerical scheme; the solutions have a cur- 
vature which is constant in space and a torsion which is identically zero. Thus these 
solutions cannot be expected to give a good indication of how the numerical 
method will work in general. The best test which can be performed on the full 
equation is to investigate the numerical solutions as the mesh spacing is decreased 
for initial conditions, in which the vortex contains a kink and is not planar. It is 
found that as the spacing between mesh points is sufficiently reduced the numerical 
solutions remain invariant. What is of crucial significance in the present context, 
however, is that the character of the numerical solutions changes drastically as the 
mesh changes from a coarse one to a finer one. If the mesh is too coarse it is obser- 
ved that there is a spurious creation of vortex loops emanating from the point of 
reconnection. Once the mesh is refined below a certain threshold the spurious 
generation ceases and the solution converges rapidly [12]. In Fig. 6a we show the 
vortex which results from the reconnection of two vortices in which the mesh 
spacing A[ = 4.0; in Fig. 6b we show the result of the reconnection from the same 
initial conditions as in Fig. 6a except that A< =OS. The converged result is the 
same as that shown in Fig. 6b. 

We emphasize that this spurious generation of vortex loops is not peculiar to our 
algorithm. We have implemented Schwarz’s algorithm as given in [ 151 and find the 

200.0 

raxls 
2000 

Ymis 

FIG 6. (a) ProjectIon of a vortex after it has undergone a reconnectlon Two perpendicular circular 
vortices are allowed to reconnect at time r = 0 and the resultant vortex is shown at time ‘I = 1600.0. 
The mesh spacing is A[ = 4.0 and AT = 1.6. The vortex is projected onto the I- z plane (b) The same 
conditions as in (a) except that the mesh spacing is A5 = 0.5 and AT = 0.01625 
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same behaviour. In Fig. 7 we show the results of a reconnection obtained with 
Schwa&s algorithm. Fig. 7a shows the initial conditions. Figures 7b and 7c show 
the resultant vortex at times t = 0.1, 0.2, respectively, calculated with a mesh 
spacing corresponding to dt = 4.0. In Figs. 7c-f we show the resultant vortex at 
time t=0.2 with different mesh spacings and time increments. We see that if 
reconnections were allowed to continue one would obtain five vortices for large 
mesh spacings, whereas the correct result would show only one large vortex. 

Almost without fail when the mesh is too coarse, spurious vortex loops will be 
created at the point of reconnection, whereas if the vortex is properly resolved a 
vortex loop will be formed at the point of reconnection only rarely. From Eq. (45) 
we see that at the reconnection point (a region of arbitrarily large curvature) the 
vortex should contract and vortex loops should not be formed. 

We analyze the origin of this threshold mesh size. The spurious vortex growth 
occurs when the numerical algorithm cannot accurately approximate a curvature, 
in reduced units, larger than one, causing the vortex to stretch numerically rather 
than contract as required by the exact solution. The condition which guarantees 
that the numerics accurately approximates the exact solution is that the mesh size 
be chosen so that curvatures much larger than one can be accurately evaluated. The 
curvature is given by 

A reasonable uniform mesh spacing along the vortex such that g, is of order unity 
requires as the condition for accurate solutions of high curvature that 

Empirically, after careful convergence studies, we find the actual numerical 
condition to be 

A( < 0.5 (51) 

for the vortex tangle calculations. We emphasize that the value 0.5 is only valid for 
the specific numerical algorithm considered here. Less robust and less accurate 
algorithms may require a more severe restriction on the spatial mesh as well as an 
auxilary restriction on the time step. Note the dependence on At in Figs. 7d-f. 

We calculated the line length in a cube with sides of length L with periodic boun- 
dary conditions as a function of 7 = L ~vO~/~. We start the calculation with simple 
initial conditions generally consisting of four circular vortices. The length of the 
vortices is calculated at each time step as they evolve. It is found that eventually the 
length reaches an equilibrium value and simply fluctuates about an average value. 
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FIG. 7. (a) The vortex irutrally. The evolutron of a vortex after a reconnection is calculated according 
to the algortthm given m [ 151. v0 is parallel to the .v-axts. The units df and dr used in Fig. 7 are the 
same as those given m [3]. They are related to the umts defined in Eq. (46) by AT = ]vrJ2 Af and 
A[ = Ar IvJ. (b) The vortex at ttme [ = 0.1, Ar = 0.1, Af = 0.0002, a = 0 I, lvt, = 40.0. (c) The vortex at 
time r=0.2, dr=O.l, dr=0.0002, a=O.l. Iv,l=40.0. (d)The vortex at ttme r=0.2, Ar=0.05. 
AI = 0.0002, M = 0. I, Iv01 = 40.0. (e) The vortex at time I = 0.2. Ar = 0.05, Af = 0.0001. r = 0.1. ]va] = 40.0. 
(f) The vortex at trme t = 0 2. Ar = 0.05, Af = 0.00005. a = 0.1, Iv01 = 40.0 
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FIG. 8. Average line length m a cube of side L as a functton of the countercurrent veloctty, 
7 = L )v,,l,!/?. The line lengths represented by the squares were calculated with A< < 0.5; the line lengths 
represented by the octagons were calculated with A{ = Ar )v,,l/B > 0.6 for two different conditions, wtth 
Ar fixed and a = 0 IO. The stratght hne corresponds to the results given in Ref. [3]. The average lme 
length is given m umts of L. 

The time average of the lengths are shown in Fig. 8 by the squares, indicating line 
lengths which are nearly linearly dependent on the velocity. The line length density, 
on the other hand, scales as the velocity squared indicating homogeneous tur- 
bulence in the earlier numerical work [3] and this result is indicated by the straight 
line passing through the origin. We note that although the line length densities for 
the finer mesh are not characteristic of homogeneous turbulence, the vortex tangles 
are spatially uniform as shown in Fig. 9. We have calculated the line length den- 
sities for several different values of c1 and we find that the previous calculations [3] 
of line length density are incorrect [ 121. 

z axis 

FIG 9 (a) A typtcal vortex tangle projected onto the I--Z plane. v0 pomts m the positive x 
direction, a = 0. IO, A5 = 0.5, y = 40.0. (b) The same imttal conditions except that At = 0.8. The increase 
m line densrty over that present in Fig. 9a is readily apparent. 
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We now see why the correct length scaling is so important in this problem. 
Physically one thinks of increasing vO, the countercurrent velocity, for given initial 
conditions. In this process the requirement that A< < 0.5 will be violated unless the 
mesh size is refined as the velocity increases. We have reproduced the earlier results 
of Schwarz for a fixed mesh independent of velocity, which leads to a violation of 
the requirement that A( ~0.5. These are the results one obtains if one does not 
make Eq. (37) dimensionless or if one does it incorrectly. We pick A( = Ar Iv,l//l 
and keep Ar fixed rather than At. Thus we are effectively calculating with a coarser 
mesh as Iv01 is increased. This is the calculation Schwarz has done in [3] by scaling 
Eq. (37) incorrectly. These results are shown in Fig. 8 by the octagons for two 
different initial conditions. The line in Fig. 8 is the one given in [S]. 

CONCLUSION 

We have shown that the line lengths previously reported in [3] were a result of 
the incorrect scaling of the model equation (37) and as a result, an underresolved 
computational mesh. The fact that we were able to reproduce the erroneous results 
of [3] indicates that the erroneous results are insensitive to the exact number of 
loops that are produced at a reconnection and that the ultimate line length density 
present is determined by the geometry of the tangle in the regions of small cur- 
vature, i.e., away from the reconnection points. This seems to indicate that the term 
which models the drag on the superfluid vortices is correct, but that the term which 
models the self-induced motion of the vortices is incorrect. The fact that more 
vortices (at a small scale) have to be introduced in order to produce a scaling which 
is characteristic of homogeneous turbulence suggests that a successful model must 
include some stretching terms which are present in the evolution of a vortex in an 
ordinary fluid as given by Eq. (1). These observations are consistent with what is 
known in the theory of vortex motion in classical fluids [8, 91. 

Equation (37) is inadequate for a description of turbulence in superfluid helium. 
It is clear that self-induction is inadequate to describe the classical motion of the 
vortex even in the superfluid case. Models to describe superfluid helium turbulence 
will have to maintain more of the non-local character of Euler’s equation than self- 
induction does. The self-induction term even with the reconnection ansatz included 
is inadequate to model the evolution of a turbulent vortex. 
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